1747 Ref: Celestial, Definition, Aberration, Planet
Planetary aberration is due, in part, to \qquad _.
A. refraction of light as it enters the Earth's atmosphere
B. rotation of the Earth on it's axis
C. the body's orbital motion during the time required for its light to reach Earth
D. a false horizon

2295 Ref: Celestial, Definition, Aphelion, Sun
Aphelion is the point where the Sun \qquad .
A. and Moon and Earth form a right angle
C. crosses the celestial equator
B. and Moon and Earth are in line
D. is farthest from the Earth

31223 Ref: Celestial, Definition, Aphelion, Sun
The Sun at a maximum declination north would be approximately at \qquad -.
A. aphelion
C. autumnal equinox
B. perihelion
D. first point of Aries

41083 Ref: Celestial, Definition, Apogee, Moon
The Moon is farthest from the Earth at \qquad -.
A. the full Moon
C. the lunar solstice
B. apogee
D. quadrature

51370 Ref: Celestial, Definition, Apogee, Moon
What condition exists at apogee?
A. The Earth is closest to the Sun.
C. The Earth is farthest from the Moon.
B. The Moon is farthest from the Sun.
D. The Moon is between the Earth and the Sun.
$6953 \quad$ Ref: Celestial, Definition, Aries, Stars
The first point of Aries is the point where the Sun is at \qquad .
A. maximum declination north
C. 0° declination going to northerly declinations
B. maximum declination south
D. 0° declination going to southerly declinations
$7954 \quad$ Ref: Celestial, Definition, Aries, Stars The First Point of Aries is the position of the Sun on the celestial sphere on or about \qquad .
A. March 21
C. September 21
B. June 21
D. December 21

838 Ref: Celestial, Definition, Augmentation, Moon
A correction for augmentation is included in the Nautical Almanac corrections for \qquad -
A. the Sun
C. Venus
B. the Moon
D. None of the above

91388 Ref: Celestial, Definition, Augmentation, Moon
What happens because of augmentation?
A. The Moon appears larger as the elevation increases.
B. The Sun appears larger when viewed against the darker background of the horizon.
C. The horizon appears elevated when observing a bright Sun or Moon at low altitudes.
D. The Moon appears larger at the full Moon.

1016 Ref: Celestial, Definition, Circumpolar, Cel Body
D
A body can only be observed at lower transit when \qquad .
A. the declination is the opposite name to the latitude
B. the algebraic sum of the colatitudes and declination exceeds 90°
C. the observer is in high latitudes above either polar circle
D. the body is circumpolar

11544 Ref: Celestial, Definition, Circumpolar, Cel Body
\qquad .
In order for a star to be used for a sight at lower transit, the star must
A. be circumpolar
B. have a declination equal to or greater than your latitude
C. have a GHA of 180°
D. have the SHA equal to or less than the LHA

12627 Ref: Celestial, Definition, Conjunction, Planet Inferior conjunction is possible for \qquad .
A. Mars
C. Saturn
B. Venus
D. Jupiter

13667 Ref: Celestial, Definition, Conjunction, Planet
Mars will not be visible \qquad .
A. at elongation angles near 180°
C. at conjunction
B. from quadrature to opposition
D. at opposition

14801 Ref: Celestial, Definition, Conjunction, Planet
Superior conjunction occurs when \qquad -.
A. the Sun is at maximum declination north or south
B. a planet crosses the external plane of the ecliptic
C. the Sun is between the Earth and a planet
D. two planets are in line

1577 Ref: Celestial, Definition, Constellation, Astro
C
A group of stars which appear close together and form a striking configuration such as a person or animal is a \qquad -.
A. cluster
C. constellation
B. shower
D. galaxy
$16259 \quad$ Ref: Celestial, Definition, Constellation, Stars
Altair is found in what constellation?
A. Hercules
C. Aquila
B. Cygnus
D. Capricorn

17293 Ref: Celestial, Definition, Constellation, Stars
Antares is found in what constellation?
A. Scorpio
C. Libra
B. Corvus
D. Corona Borealis

18346 Ref: Celestial, Definition, Constellation, Stars
D Bellatrix is found in what constellation?
A. Canis Minor
C. Taurus
B. Gemini
D. Orion

19361 Ref: Celestial, Definition, Constellation, Stars Capella is found in what constellation?
A. Gemini
C. Libra
B. Auriga
D. Crab

20400 Ref: Celestial, Definition, Constellation, Stars
Deneb is found in what constellation?
A. Cygnus
C. Ursa Major
B. Pegasus
D. Andromeda

21401 Ref: Celestial, Definition, Constellation, Stars Denebola is found in what constellation?
A. Hydrus
C. Centaurus
B. Leo
D. Aquila

22446 Ref: Celestial, Definition, Constellation, Stars
Fomalhaut is found in what constellation?
A. Leo
C. Pisces
B. Taurus
D. Canis Major

23675 Ref: Celestial, Definition, Constellation, Stars
Miaplacidus is found in what constellation?
A. Puppis
C. Centaurus
B. Hydrus
D. Carina

24868 Ref: Celestial, Definition, Constellation, Stars The constellation that contains Polaris is \qquad _.
A. Orion
C. Ursa Minor
B. Cassiopeia
D. Corona Borealis
$25869 \quad$ Ref: Celestial, Definition, Constellation, Stars
The constellation that contains the pointer stars is \qquad .
A. Orion
C. the Southern Cross
B. Ursa Major
D. Pegasus

26417 Ref: Celestial, Definition, Diurnal Aberration, Earth
Diurnal aberration is due to \qquad .
A. motion of the Earth in its orbit
B. rotation of the Earth on its axis
C. the body's orbital motion during the time required for its light to reach the Earth
D. a false horizon
$2754 \quad$ Ref: Celestial, Definition, Double Star, Astro A double star is a star that \qquad .
A. has a declination equal to twice that of the Sun
B. comprises two stars that appear close together
C. is twice as bright as a single star
D. suddenly becomes much brighter and then fades
$28 \quad 939$ Ref: Celestial, Definition, Ecliptic, Sun
The ecliptic is \qquad _.
A. the path the Sun appears to take among the stars
B. the path the Earth appears to take among the stars
C. a diagram of the zodiac
D. a great circle on a gnomonic chart

291118 Ref: Celestial, Definition, Ecliptic, Sun
The path that the Sun appears to take among the stars is the \qquad .
A. zodiac
C. ecliptic
B. Tropic of Cancer in the Northern Hemisphere
D. line of apsides

30830 Ref: Celestial, Definition, Equinoxes, Sun
The autumnal equinox is the point where the Sun is at \qquad .
A. maximum declination north
C. 0° declination going to northerly declinations
B. maximum declination south
D. 0° declination going to southerly declinations
$31 \quad 1138$ Ref: Celestial, Definition, Equinoxes, Sun
The points where the Sun is at 0° declination are known as \qquad .
A. solstices
C. perigee
B. equinoxes
D. apogee

3286 Ref: Celestial, Definition, Galaxy, Astro
A large group of stars revolving around a center is known as a \qquad .
A. cluster
C. constellation
B. shower
D. galaxy

331081 Ref: Celestial, Definition, Galaxy, Astro
The Milky Way is an example of a \qquad -
A. cluster
C. nova
B. galaxy
D. nebula

341703 Ref: Celestial, Definition, Inferior, Planet
Which is an inferior planet?
A. Mars
C. Neptune
B. Venus
D. Pluto

35811 Ref: Celestial, Definition, Instrument, Azimuth Circle
The accuracy of an azimuth circle can be checked by \qquad .
A. sighting a terrestrial range in line and comparing the observed bearing against the charted bearing
B. aligning the relative bearing markings so that 000° is on the lubber's line and the line of sight passes over the center of the compass
C. ensuring that the alignment marks on the inner face of the circle are in line with those on the repeater on relative bearings of 000° and 090°
D. comparing observed azimuths at different altitudes with computed values at the times of observation to see if the difference is constant

36919 Ref: Celestial, Definition, Intercept, Sight Reduction
The distance in miles between the circle of equal altitude for the observed altitude (Ho) and the circle of equal altitude for the computed altitude (Hc) is the \qquad -.
A. equation of time
C. intercept
B. zenith distance
D. zenith angle

371009 Ref: Celestial, Definition, Jupiter, Planet
The largest of the navigational planets is \qquad -
A. Mars
C. Jupiter
B. Venus
D. Saturn

38894 Ref: Celestial, Definition, LHA, Sight Reduction
The difference (measured in degrees) between the GHA of the body and the longitude of the observer is the \qquad -.
A. right ascension
C. SHA of the observer
B. meridian angle
D. zenith distance

391086 Ref: Celestial, Definition, Libration, Moon
The Moon is subject to four types of libration. Which of the following is NOT one of these types of libration?
A. Libration in longitude
B. Diurnal libration
C. Vertical libration
D. Libration in latitude

401087 Ref: Celestial, Definition, Libration, Moon
The Moon is subject to four types of libration. Which of the following is NOT one of these types of libration?
A. Libration in latitude
C. Physical libration
B. Diurnal libration
D. Horizontal libration

41101 Ref: Celestial, Definition, Lop, Sight Reduction
A line of position from a celestial observation is a segment of a \qquad .
A. circle of equal altitude
C. parallel of altitude
B. parallel of declination
D. vertical circle

42741 Ref: Celestial, Definition, Magnitude, Planet \qquad .
Other than the Sun and Moon, the brightest object in the sky is .
A. Sirius
C. Venus
B. Canopus
D. Jupiter

431428 Ref: Celestial, Definition, Magnitude, Planet
What is the brightest navigational planet?
A. Saturn
C. Mars
B. Jupiter
D. Venus
$44 \quad 58$ Ref: Celestial, Definition, Magnitude, Stars
A first magnitude star is \qquad _.
A. 2.5 times as bright as a second magnitude star
B. 3 times as bright as a second magnitude star
C. 5 times as bright as a second magnitude star
D. 10 times as bright as a second magnitude star
$45947 \quad$ Ref: Celestial, Definition, Magnitude, Stars
The expression "first magnitude" is usually used to refer only to bodies of magnitude \qquad .
A. 1.5 and greater
B. 1.25 and greater
C. 1.0 and greater
D. 0.5 and greater

461004 Ref: Celestial, Definition, Magnitude, Stars
The immediate surroundings of what constellation contain the most first magnitude stars?
A. Libra
C. Pegasus
B. Cassiopeia
D. Orion

471071 Ref: Celestial, Definition, Magnitude, Stars
The magnitude of three stars is indicated. Which star is the brightest?
A. Canopus-0.9
B. Vega +0.1
C. Antares +1.2
D. Cannot be determined; magnitude indicates size not brightness

481072 Ref: Celestial, Definition, Magnitude, Stars
The magnitude of three stars is indicated. Which star is the brightest?
A. Antares +1.2
B. Altair +0.9
C. Vega +0.1
D. Cannot be determined; magnitude indicates size not brightness

$491218 \quad$ Ref: Celestial, Definition, Magnitude, Stars

The star lists in the Nautical Almanac are based on which of the following magnitudes?
A. First
C. Sixth
B. Third
D. Tenth
$501303 \quad$ Ref: Celestial, Definition, Magnitude, Stars
Under ideal viewing conditions, the dimmest star that can be seen with the unaided eye is of what magnitude?
A. First
C. Fourth
B. Third
D. Sixth
$51 \quad 1093$ Ref: Celestial, Definition, Nadir, Sight Reduction The nadir is the point on the celestial sphere that is \qquad -.
A. 90° away from the zenith C. on the western horizon
B. over Greenwich
D. directly below the observer

52184 Ref: Celestial, Definition, Nova, Astro
A star that suddenly becomes several magnitudes brighter and then gradually fades is a \qquad .
A. double star
C. nova
B. variable star
D. nebula

53740 Ref: Celestial, Definition, Opposition, Planet
Opposition occurs when \qquad _.
A. the Sun, Earth, and Moon are at right angles
B. the Sun's declination is 0° and is moving south
C. an inferior planet is at the maximum angle to the line of sight to the Sun
D. the Earth is between a planet and the Sun

541500 Ref: Celestial, Definition, Parallax, Earth
What sextant correction corrects the apparent altitude to the equivalent reading at the center of the Earth?
A. Phase
C. Semidiameter
B. Parallax
D. Augmentation
$551085 \quad$ Ref: Celestial, Definition, Perigee, Moon
The Moon is nearest to the Earth at \qquad -.
A. perigee
C. the new Moon
B. the vernal equinox
D. the full Moon

561371 Ref: Celestial, Definition, Perigee, Moon
What condition exists at perigee?
A. The Earth is farthest from the Sun.
C. The Earth, Sun, and Moon are at right angles.
B. The Earth, Sun, and Moon are in line.
D. The Moon is closest to the Earth.
$57 \quad 742 \quad$ Ref: Celestial, Definition, Perihelion, Sun
Perihelion is the point where the Sun \qquad _.
A. is nearest to the Earth
B. is farthest from the Earth
C. is on the opposite side of the Earth from the Moon
D. and Moon and Earth are in line
$581224 \quad$ Ref: Celestial, Definition, Perihelion, Sun
D
The Sun is closest to the Earth in what month?
A. October
C. April
B. July
D. January

59534 Ref: Celestial, Definition, Phase, Moon
In low latitudes, a last quarter moon will always rise at about \qquad -
A. sunrise
C. sunset
B. 1200 LMT
D. 2400 LMT

60535 Ref: Celestial, Definition, Phase, Moon
In low latitudes, the full Moon will always rise at about \qquad -
A. sunrise
C. sunset
B. 1200 LMT
D. 2400 LMT

61666 Ref: Celestial, Definition, Phase, Planet
Mars is only seen at two phases, one of which \qquad C.
A. is the full phase
C. occurs only at sunset or sunrise
B. is conjunction
D. occurs at or near 0° elongation
$62580 \quad$ Ref: Celestial, Definition, Planets, Planet
In the Nautical Almanac provided, when would Jupiter and Saturn be visible in temperate latitudes for both evening and morning stars?
A. 10 January
B. 27 March
C. 22 June
D. 8 October
$631143 \quad$ Ref: Celestial, Definition, Precession, Stars
The precession of the equinoxes occurs in a(n) \qquad .
A. easterly direction
C. northerly direction
B. westerly direction
D. southerly direction

641144 Ref: Celestial, Definition, Precession, Stars
D
The precession of the equinoxes of the Earth is \qquad .
A. the gradual increase in the period of rotation caused by the effects of the Moon
B. the irregularity of the Earth's orbit caused by influences of the Sun and Moon
C. caused by the elliptical shape of the Earth's orbit
D. similar to a top spinning with its axis tilted

65502 Ref: Celestial, Definition, RA, Cel Body
If the right ascension of a body is 9 hours, it also \qquad _.
A. is 135°
B. corresponds to an SHA for the body of 45°
C. means that the GP of the body is in the western hemisphere
D. All of the above

66767 Ref: Celestial, Definition, RA, Cel Body
Right ascension is primarily used by the navigator for \qquad .
A. calculating amplitudes
B. calculating great circle sailings by the Ageton method
C. entering the Air Navigation Tables (Selected Stars) Pub 249
D. plotting on star finders

67966 Ref: Celestial, Definition, RA, Cel Body

The GHA of the first point of Aries is 315° and the GHA of a planet is 150°. What is the right ascension of the planet?
A. 7 hours
B. 11 hours
C. 19 hours
D. 23 hours
$68 \quad 815$ Ref: Celestial, Definition, RA, Stars
The angle measured eastward from the vernal equinox along the celestial equator often expressed in time units is the \qquad .
A. Greenwich sidereal time
B. right ascension
C. local sidereal time
D. sidereal hour angle
$69766 \quad$ Ref: Celestial, Definition, Retrograde, Planet
Retrograde motion is the \qquad -
A. movement of the points of intersection of the planes of the ecliptic and the equator
B. apparent westerly motion of a planet with respect to stars
C. movement of a superior planet in its orbit about the Sun
D. movement of the celestial north pole in an elliptical pattern in space
$70 \quad 3 \quad$ Ref: Celestial, Definition, Revolution, Cel Body
"Revolution" is the \qquad _.
A. wobbling of the Earth about its axis
B. motion of bodies in the solar system relative to the stars
C. motion of a celestial body in its orbit
D. spinning of a celestial body about its axis

7125 Ref: Celestial, Definition, Revolution, Cel Body A celestial body's complete orbit around another body is \qquad .
A. a rotation
C. space motion
B. a revolution
D. nutation

721122 Ref: Celestial, Definition, Revolution, Moon
The period of revolution of the Moon is \qquad _.
A. 24 hours
C. 365 days
B. about 27.3 days
D. about 19 years

73533 Ref: Celestial, Definition, Rise, Moon In low latitudes, a first quarter Moon will always rise at about \qquad .
A. sunrise
C. sunset
B. 1200 LMT
D. 2400 LMT

74538 Ref: Celestial, Definition, Rise, Moon In low latitudes, the new Moon will always rise at about \qquad .
A. sunrise
C. sunset
B. 1200 LMT
D. 2400 LMT

754 Ref: Celestial, Definition, Rotation, Cel Body
"Rotation" is the \qquad -
A. wobbling of the Earth about its axis
B. motion of bodies in the solar system relative to the stars
C. motion of a celestial body in its orbit
D. spinning of a celestial body about its axis
$761209 \quad$ Ref: Celestial, Definition, Rotation, Cel Body
The spinning motion of a planet around its axis is called \qquad -.
A. revolution
C. orbit
B. rotation
D. space motion
$771210 \quad$ Ref: Celestial, Definition, Rotation, Cel Body The spinning of a celestial body about its axis is known as \qquad mion
A. rotation
C. space motion
B. revolution
D. nutation
$781123 \quad$ Ref: Celestial, Definition, Rotation, Moon
The period of rotation of the Moon on its axis is \qquad
A. about 19 years
C. about 27.3 days
B. 365 days
D. 24 hours

$79 \quad 777$ Ref: Celestial, Definition, SHA, Stars

Sidereal hour angle is always \qquad -
A. measured westward from the hour circle containing the first point of Aries
B. measured from the point on the celestial sphere occupied by the Sun at the vernal equinox
C. subtracted from the LHA of the star to obtain the LHA of Aries
D. All of the above

80817 Ref: Celestial, Definition, SHA, Stars
The angle that is measured westward from the first point of Aries to the hour circle of the body along the celestial equator is the \qquad .
A. Greenwich sidereal angle
C. sidereal hour angle
B. local sidereal time
D. azimuth angle

81845 Ref: Celestial, Definition, SHA, Stars
The celestial coordinate of a star that is relatively constant in value is the \qquad .
A. Greenwich hour angle
C. sidereal hour angle
B. local hour angle
D. meridian angle

821073 Ref: Celestial, Definition, Sights, Moon
The major problem with Moon sights is the \qquad -
A. rapid changes in GHA and declination introduce errors into the calculations
B. lack of a well defined limb during certain phases and positions in the sky
C. approximations used in the solution caused by the variable horizontal parallax
D. augmentation effect caused by the relatively short distance to the Moon
$831135 \quad$ Ref: Celestial, Definition, Solstice, Sun
The point where the Sun is at maximum declination north or south is \qquad .
A. aphelion
B. perihelion
C. an equinox
D. a solstice

841222 Ref: Celestial, Definition, Solstice, Sun
The summer solstice is the point where the Sun is at \qquad .
A. maximum declination north
B. maximum declination south
C. 0° declination going to northerly declinations
D. 0° declination going to southerly declinations
$851281 \quad$ Ref: Celestial, Definition, Solstice, Sun
B
The winter solstice is the point where the Sun is at \qquad .
A. maximum declination north
B. maximum declination south
C. 0° declination going to northerly declinations
D. 0° declination going to southerly declinations

861668 Ref: Celestial, Definition, Solstice, Sun
Which condition exists at the summer solstice in the Northern Hemisphere?
A. The north polar regions are in continual darkness.
B. The Northern Hemisphere is having short days and long nights.
C. The Southern Hemisphere is having winter.
D. The Sun shines equally on both hemispheres.
$875 \quad$ Ref: Celestial, Definition, Space Motion, Cel Body
"Space motion" is the \qquad .
A. action causing precession of the equinoxes
B. motion of a body in the solar system relative to the stars
C. motion of a celestial body in its orbit
D. irregularity in the motion of the Earth caused by other celestial bodies

881091 Ref: Celestial, Definition, Space Motion, Cel Body
The motion of celestial bodies relative to other celestial bodies is known as \qquad .
A. space motion
C. diurnal motion
B. apparent motion
D. actual motion

891607 Ref: Celestial, Definition, Tidal Currents, Moon
When the declination of the Moon is $0^{\circ} 12.5^{\prime} \mathrm{S}$, you can expect some tidal currents in Gulf Coast ports to
A. become weak and variable
C. become reversing currents
B. exceed the predicted velocities
D. have either a double ebb or a double flood

90196 Ref: Celestial, Definition, Time Diagram, Earth
A time diagram is a diagram on the plane of the \qquad -.
A. celestial meridian
C. celestial horizon
B. celestial equator
D. principal vertical circle

91206 Ref: Celestial, Definition, Variable Star, Astro
A variable star is one that \qquad _.
A. exhibits a change in magnitude
C. is increasing in SHA
B. has a changing declination
D. is also known as a red giant

921132 Ref: Celestial, Definition, Venus, Planet
The planet Venus can be observed in the morning before sunrise if it is well to the \qquad .
A. west of and higher than the Sun
C. east of and higher than the Sun
B. west of and lower than the Sun
D. east of and lower than the Sun

931367 Ref: Celestial, Definition, Venus, Planet
D What celestial body may sometimes be observed in daylight?
A. New Moon
C. Sirius
B. Saturn
D. Venus
$941082 \quad$ Ref: Celestial, Definition
The Moon and Sun are in line over your meridian. Tomorrow when the Sun is over your meridian, the Moon will be \qquad .
A. over the meridian too
C. about 6° West of the meridian
B. about 12° East of the meridian
D. about 11° west of the meridian
$951105 \quad$ Ref: Celestial, Definition
The new Moon cannot be seen because the Moon is \qquad .
A. in the opposite direction of the Sun
C. between the Earth and the Sun
B. below the horizon
D. at quadrature
$961342 \quad$ Ref: Celestial, Definition
\qquad .
A. lesser distance between the Earth and the Moon
B. phase of the Moon
C. rapid change in declination of the Moon
D. effects of augmentation and horizontal parallax

$971465 \quad$ Ref: Celestial, Definitions, High Altitude, Cel Body
What is the major advantage of high altitude observations?
A. Errors due to unusual parallax are eliminated.
B. The same body can be used for a fix from observations separated by several minutes.
C. The declination is the only information needed from the almanac.
D. The semidiameter correction of the sextant altitude is eliminated.

981467 Ref: Celestial, Definitions, High Altitude, Cel Body
What is the major problem with taking high altitude sun observations?
A. Possible errors due to unusual refraction may exist.
B. The tables are not as accurate due to inherent errors in the spherical triangle at high altitudes.
C. Rapidly changing altitudes make it difficult to get an accurate altitude.
D. It is difficult to establish the point where the sextant is vertical to the horizon.

991842 Ref: Celestial, Definitions, Low, Sun
Why are low altitude sun sights not generally used?
A. Errors due to unusual refraction may exist.
B. Sextants may have large errors at small angles of elevation.
C. Modern sight reduction tables are not complete for low altitudes below 5°.
D. The glare on the horizon causes irradiation errors.

100323 Ref: Celestial, Definitions, Quadrant, Stars
D
At evening stars, the first stars that should be observed are those with an azimuth in what quadrant?
A. Southern
C. Northern
B. Western
D. Eastern

101324 Ref: Celestial, Definitions, Quadrant, Stars
B
At evening stars, the last stars that should be observed are those with an azimuth in what quadrant?
A. Southern
C. Northern
B. Western
D. Eastern

102328 Ref: Celestial, Definitions, Quadrant, Stars
At morning stars, the first stars that should be observed are those with an azimuth in which quadrant?
A. Eastern
C. Western
B. Southern
D. Northern

103329 Ref: Celestial, Definitions, Quadrant, Stars
At morning stars, the last stars that should be observed are those with an azimuth in which quadrant?
A. Eastern
C. Western
B. Southern
D. Northern

1041606 Ref: Celestial, Definitions, Quadrant, Stars
When taking stars, those bodies to the east and west will \qquad -
A. change altitude rapidly
B. change altitude slowly
C. remain in an almost fixed position
D. appear to be moving in the plane of the horizon

105264 Ref: Celestial, Observation, Amplitude, Visible
An amplitude of the Sun in high latitudes \qquad -.
A. is most accurate before sunrise
B. is most accurate after sunset
C. should only be observed when the Sun's lower limb is above the horizon
D. is most accurate when the Sun's center is observed on the visible horizon

1061605 Ref: Celestial, Observation, Amplitude, Visible

A

When taking an amplitude, the Sun's center should be observed on the visible horizon when \qquad .
A. in high latitudes
B. the Sun is near or at a solstice
C. the declination is of a different name from the latitude
D. the Sun's declination is at or near 0°
$1071156 \quad$ Ref: Celestial, Observation, Amplitude
The prime vertical is the reference point from which the angle of which type of observation is measured?
A. Sextant angle
C. Amplitude
B. Azimuth
D. Local apparent noon

108816 Ref: Celestial, Observation, Azimuth, Angle
The angle measured from the observer's meridian, clockwise or counterclockwise up to 180°, to the vertical circle of the body is the \qquad —.
A. local hour angle
C. meridian angle
B. azimuth angle
D. observer's longitude

1091938 Ref: Celestial, Observation, Azimuth, Course
You are on course $042^{\circ} \mathrm{T}$. To check the course of your vessel you should observe a celestial body on which bearing?
A. 090°
B. 132°
C. 180°
D. 222°

1101948 Ref: Celestial, Observation, Azimuth, Course
You are on course $238^{\circ} \mathrm{T}$. To check the course of your vessel you should observe a celestial body on which bearing?
A. 180°
B. 238°
C. 328°
D. 090°

1111831 Ref: Celestial, Observation, Azimuth, Latitude
While steering a course of $150^{\circ} \mathrm{T}$, you wish to observe a body for a latitude check. What would the azimuth have to be?
A. $000^{\circ} \mathrm{T}$
B. $090^{\circ} \mathrm{T}$
C. $150^{\circ} \mathrm{T}$
D. $240^{\circ} \mathrm{T}$

1121941 Ref: Celestial, Observation, Azimuth, Latitude
You are on course $138^{\circ} \mathrm{T}$. To check the latitude of your vessel you should observe a celestial body on which bearing?
A. 138°
B. 270°
C. 318°
D. 000°

1131947 Ref: Celestial, Observation, Azimuth, Latitude
You are on course $226^{\circ} \mathrm{T}$. In order to check the latitude of your vessel, you should observe a celestial body on which bearing?
A. 226°
B. 270°
C. 000°
D. 026°

1141939 Ref: Celestial, Observation, Azimuth, Longitude
You are on course $061^{\circ} \mathrm{T}$. To check the longitude of your vessel you should observe a celestial body on which bearing?
A. 090°
B. 180°
C. 241°
D. 061°

1151945 Ref: Celestial, Observation, Azimuth, Longitude
You are on course 209°. In order to check the longitude of your vessel, you should observe a celestial body on which bearing?
A. 209°
B. 270°
C. 299°
D. 000°

1161577 Ref: Celestial, Observation, Azimuth, Polaris When determining compass error by an azimuth of Polaris, you enter the Nautical Almanac with the
A. GHA Aries
C. LHA Polaris
B. LHA Aries
D. GHA Polaris

1171832 Ref: Celestial, Observation, Azimuth, Speed
While steering a course of $150^{\circ} \mathrm{T}$, you wish to observe the Sun for a speed check. What would the azimuth have to be?
A. $060^{\circ} \mathrm{T}$
B. $090^{\circ} \mathrm{T}$
C. $150^{\circ} \mathrm{T}$
D. $240^{\circ} \mathrm{T}$

1181942 Ref: Celestial, Observation, Azimuth, Speed
D
You are on course $146^{\circ} \mathrm{T}$. To check the speed of your vessel you should observe a celestial body on which bearing?
A. 000°
B. 056°
C. 090°
D. 146°

1191944 Ref: Celestial, Observation, Azimuth, Speed
D
You are on course $201^{\circ} \mathrm{T}$. To check the speed of your vessel you should observe a celestial body on which bearing?
A. 090°
B. 111°
C. 180°
D. 201°

1201950 Ref: Celestial, Observation, Azimuth, Speed
C
You are on course 303° T. To check the speed of your vessel you should observe a celestial body on which bearing?
A. 000°
B. 090°
C. 123°
D. 213°

1211951 Ref: Celestial, Observation, Azimuth, Speed
You are on course 312° T. To check the speed of your vessel you should observe a celestial body on which bearing?
A. 312°
B. 000°
C. 090°
D. 222°

12288 Ref: Celestial, Observation, LAN, Latitude
C
A latitude line will be obtained by observing a body \qquad .
A. on the prime vertical
B. on the celestial horizon
C. at lower transit
D. on the Greenwich meridian

123183 Ref: Celestial, Observation, LAN, Latitude
A star is observed at lower transit. The line of position derived from this sight is \qquad .
A. on the prime vertical
B. a latitude line
C. a longitude line
D. of no special significance

1241056 Ref: Celestial, Observation, LAN, LMT
The LMT of LAN is 1210 . Your longitude is $70^{\circ} 30^{\prime} \mathrm{E}$. Which time would you use to enter the Nautical Almanac to determine the declination of the Sun at LAN?
A. 1842
B. 1652
C. 0728
D. 0652

1251058 Ref: Celestial, Observation, LAN, LMT

The Local mean time of LAN is 1152 . Your longitude is $73^{\circ} 15^{\prime}$. . What time would you use to enter the Nautical Almanac to determine the declination of the Sun at LAN?
A. 0659
B. 0652
C. 1859
D. 1852
$1261154 \quad$ Ref: Celestial, Observation, LAN, LMT
\qquad
A. calculate sunrise or sunset
C. enter an almanac
B. determine zone time
D. determine the time of meridian transit

127460 Ref: Celestial, Observation, LAN
Given are the courses and speeds of 4 vessels. The navigator of which vessel would be required to know the actual time of meridian transit in order to take an accurate observation at LAN ?
A. $\mathrm{C} 018^{\circ} \mathrm{T}$, Sp 6 knots
C. C $101^{\circ} \mathrm{T}, \mathrm{Sp} 7$ knots
B. $\mathrm{C} 079^{\circ} \mathrm{T}, \mathrm{Sp} 24$ knots
D. C $349^{\circ} \mathrm{T}, \mathrm{Sp} 25$ knots

128461 Ref: Celestial, Observation, LAN

Given are the courses and speeds of 4 vessels. The navigator of which vessel would be required to know the actual time of meridian transit in order to take an accurate observation at LAN?
A. $\mathrm{C} 356^{\circ} \mathrm{T}$, Sp 5.5 knots
C. $\mathrm{C} 095^{\circ} \mathrm{T}$, Sp 30 knots
B. C $162^{\circ} \mathrm{T}, \mathrm{Sp} 27$ knots
D. C $268^{\circ} \mathrm{T}, \mathrm{Sp} 22$ knots

129462 Ref: Celestial, Observation, LAN

Given are the courses and speeds of 4 vessels. The navigator of which vessel would be required to know the actual time of meridian transit in order to take an accurate observation at LAN?
A. C $356^{\circ} \mathrm{T}$, Sp 5 knots
C. C $192^{\circ} \mathrm{T}$, Sp 23 knots
B. $\mathrm{C} 099^{\circ} \mathrm{T}, \mathrm{Sp} 17$ knots
D. C $278^{\circ} \mathrm{T}, \mathrm{Sp} 6$ knots

130463 Ref: Celestial, Observation, LAN
Given are the courses and speeds of 4 vessels. The navigator of which vessel would be required to know the actual time of meridian transit in order to take an accurate observation at LAN?
A. C $166^{\circ} \mathrm{T}$, Sp 24 knots
C. C $291^{\circ} \mathrm{T}, \mathrm{Sp} 25$ knots
B. $\mathrm{C} 013^{\circ} \mathrm{T}, \mathrm{Sp} 7$ knots
D. $\mathrm{C} 112^{\circ} \mathrm{T}, \mathrm{Sp} 4$ knots

131813 Ref: Celestial, Observation, LAN
The altitude at LAN may be observed by starting several minutes in advance and continuing until a
maximum altitude occurs. This procedure should not be used \qquad -.
A. when the declination and latitude are of different names
B. when the declination is greater than and the same name as the latitude
C. if the vessel is stopped or making bare steerageway
D. on a fast vessel on northerly or southerly headings

132372 Ref: Celestial, Observation, Twilight, Civil
Civil twilight begins at 1910 zone time on 20 July. Your DR position at that time is LAT $22^{\circ} 16{ }^{\prime} \mathrm{N}$, LONG $150^{\circ} 06^{\prime} \mathrm{W}$. Which statement concerning the planets available for evening sights is TRUE?
A. Venus will have a westerly meridian angle.
B. Mars will set about one hour after the Sun sets.
C. Mars, Venus, Jupiter, and Saturn will be above the horizon.
D. Sights of Saturn, Jupiter, and Venus will yield a good three-line-of-position fix.

133373 Ref: Celestial, Observation, Twilight, Civil
Civil twilight occurs at 0558 zone time on 30 December. Your DR position at that time is LAT $15^{\circ} 02^{\prime} \mathrm{N}$, LONG $46^{\circ} 02^{\prime} \mathrm{W}$. Which statement concerning the planets available for morning sights is TRUE?
A. At 0558, Mars can be used for an ex-meridian observation.
B. Venus, Jupiter, and Mars sights will yield a good three line fix.
C. Saturn will be near the prime vertical.
D. Venus will be visible low in the western sky.

134374 Ref: Celestial, Observation, Twilight, Civil

Civil twilight starts at 1812 zone time on 26 August, Your DR position at that time is LAT $21^{\circ} 06$ 'S, LONG
$14^{\circ} 56^{\prime} \mathrm{W}$. Which statement concerning the planets available for evening sights is TRUE?
A. Mars will be near the prime vertical in the eastern sky.
B. Venus may be identified from Saturn and Jupiter because it is the brightest.
C. Sights of Venus, Jupiter, and Saturn will yield a good three line fix.
D. A sight of either Jupiter, Saturn, or Venus will give a latitude line.
$135530 \quad$ Ref: Celestial, Observation, Twilight, Civil
In general, the most effective period for observing stars and planets occurs during the darker limit of \qquad .
A. sunset
C. nautical twilight
B. civil twilight
D. astronomical twilight

1361628 Ref: Celestial, Sextant, Characteristic, Horizontal Sextant Angle
When using horizontal sextant angles of three objects to fix your position, an indeterminate position will result in which situation?
A. The objects lie in a straight line.
B. The vessel is inside of a triangle formed by the objects.
C. The vessel is outside of a triangle formed by the objects.
D. A circle will pass through your position and the three objects.

137343 Ref: Celestial, Sextant, Characteristic, Reflecting Property
Because of the reflecting properties of a sextant, if the sextant altitude reads 60° on the limb, the actual arc of the limb from 0° to the 60° reading is \qquad -
A. 20°
C. 40°
B. 30°
D. 60°

1381609 Ref: Celestial, Sextant, Characteristic, Reflecting Property
When the index and horizon mirrors of a properly adjusted sextant are at an angle of 45° to each other, the arc reads \qquad —.
A. $221 / 2^{\circ}$
B. 45°
C. 60°
D. 90°

139531 Ref: Celestial, Sextant, Correction, Dip
In high latitudes, celestial observations can be made over a horizon covered with pack ice by bringing the sun tangent to the ice and \qquad -.
A. adding 30° of arc to the sight
B. using a dip correction based on the height of eye above the ice
C. doubling the semidiameter correction
D. using a dip correction from table 22 in Bowditch Vol II

1401569 Ref: Celestial, Sextant, Correction, Ha To Ho
When correcting apparent altitude to observed altitude, you do NOT apply a correction for \qquad .
A. the equivalent reading to the center of the body
B. the equivalent reading from the center of the Earth
C. the bending of the rays of light from the body
D. inaccuracies in the reference level

141296 Ref: Celestial, Sextant, Correction, Hs To Ha
Apparent altitude is sextant altitude corrected for \qquad -
A. parallax and personal error
B. inaccuracies in the reading and reference level
C. visibility and magnitude
D. All of the above are correct

1421570 Ref: Celestial, Sextant, Correction, Hs To Ha
When correcting the sextant altitude to apparent altitude you are correcting for inaccuracies in the reading and \qquad _.
A. for inaccuracies in the reference level
B. the equivalent reading at the center of the body
C. the equivalent reading from the center of the Earth
D. the bending of the rays of light from the body

1431571 Ref: Celestial, Sextant, Correction, Hs To Ha

When correcting the sextant altitude to apparent altitude you are correcting for inaccuracies in the reference level and \qquad .
A. the equivalent reading to the center of the body
B. the equivalent reading from the center of the Earth
C. for inaccuracies in the instrument
D. the bending of the rays of light from the body

144872 Ref: Celestial, Sextant, Correction, IC
The correction tables in the Nautical Almanac for use with Moon sights do NOT include the effects of
A. instrument error
C. semidiameter
B. augmentation
D. parallax

145871 Ref: Celestial, Sextant, Correction, Irradiation
The correction tables in the front of the Nautical Almanac for use with sun sights do NOT include the effects of \qquad -.
A. mean refraction
C. semidiameter
B. parallax
D. irradiation

146125 Ref: Celestial, Sextant, Correction, Parallax A parallax correction is NOT applied to observations of the \qquad .
A. stars
C. Sun
B. Moon
D. Planets

147128 Ref: Celestial, Sextant, Correction, Phase
A phase correction may be applicable to correct the sextant altitude correction of \qquad .
A. any star
C. third magnitude stars only
B. the Sun
D. some planets

1481128 Ref: Celestial, Sextant, Correction, Phase
The phase correction should be applied to sights of Venus and Mars \qquad .
A. during day time observations only
C. at all times
B. during twilight observations only
D. when observed at altitudes of less than 25°

149127 Ref: Celestial, Sextant, Correction, Phase Corr
A phase correction is applied to observations of \qquad .
A. the Sun
C. planets
B. stars
D. All of the above

150344 Ref: Celestial, Sextant, Correction, Phase Corr
Because the actual center of some planets may differ from the observed center, the navigator applies a correction known as the \qquad .
A. phase correction
B. refraction correction
C. semidiameter correction
D. augmentation correction

151313 Ref: Celestial, Sextant, Correction, Refraction
Astronomical refraction causes a celestial body to appear \qquad .
A. to the left of its position in the Northern Hemisphere and to the right in the Southern Hemisphere
B. to the right of its position in the Northern Hemisphere and to the left in the Southern Hemisphere
C. higher than its actual position
D. lower than its actual position

152946 Ref: Celestial, Sextant, Correction, Refraction
The error in a sextant altitude caused by refraction is greatest when the celestial body is \qquad .
A. high in the sky
C. rising
B. near the horizon
D. at or near transit

153161 Ref: Celestial, Sextant, Correction, SD
A semidiameter correction is applied to observations of \qquad
A. Mars
C. Jupiter
B. the Moon
D. All of the above

154893 Ref: Celestial, Sextant, Correction, SD
The diameter of the Sun and Moon as seen from the Earth varies slightly but averages about
A. 1'
C. 32^{\prime}
B. 52^{\prime}
D. 15.5^{\prime}

1551644

Ref: Celestial, Sextant, Correction, SD
Where do you find the semidiameter correction to be used to correct sextant observations of the stars?
A. It is included in the altitude corrections inside the front cover of the Nautical Almanac.
B. Table 25 in Bowditch contains the correction.
C. A correction of -0.5 should be applied to all star sights.
D. No semidiameter correction is used.

156615 Ref: Celestial, Sextant, Error, Adjustments
In what order should the following sextant adjustments be made? I. Make telescope parallel to frame of sextant. II. Set horizon glass perpendicular to frame of sextant. III. Make index mirror and horizon glass parallel when index arm is set at zero. IV. Set index mirror perpendicular to frame of sextant.
A. I, II, III, IV
C. III, II, IV, I
B. I, IV, II, III
D. IV, II, III, I

1571701 Ref: Celestial, Sextant, Error, Centering
Which is a nonadjustable error of the sextant?
A. Error of perpendicularity
C. Error of collimation
B. Side error
D. Centering error

1581284 Ref: Celestial, Sextant, Error, Collimation
There are seven sources of error in the marine sextant. Of the four errors listed, which one is adjustable?
A. Error of collimation
C. Graduation error
B. Prismatic error
D. Centering error

1591366 Ref: Celestial, Sextant, Error, Collimation

What causes the error of collimation with regards to the four adjustments to a sextant?
A. Telescope not parallel to the frame
B. Personal error
C. The frame and index mirror not perpendicular
D. The frame and horizon glass not perpendicular

160448 Ref: Celestial, Sextant, Error, IC
For a well made and well maintained sextant, the maximum value of which correction is usually so small that it can be ignored?
A. Personal correction
C. Phase
B. Instrument correction
D. Dip correction

161548 Ref: Celestial, Sextant, Error, Index
In order to remove index error from a sextant, you should adjust the \qquad .
A. index mirror to make it parallel to the horizon glass with the index set at zero
B. horizon glass to make it parallel to the index mirror with the index set at zero
C. horizon glass to make it parallel to the sextant frame
D. telescope to make it perpendicular to the sextant frame

162624 Ref: Celestial, Sextant, Error, Index
Index error of a sextant is primarily caused by \qquad .
A. improperly correcting the other errors in a sextant
B. the horizon glass not being parallel to the horizon mirror
C. the horizon glass not being parallel to the index mirror
D. human error in taking a celestial observation

1631005 Ref: Celestial, Sextant, Error, Index
D
The index error is determined by adjusting the \qquad .
A. sextant frame
C. index mirror
B. horizon glass
D. micrometer drum
$1641736 \quad$ Ref: Celestial, Sextant, Error, Index
Which of the four adjustable errors in the sextant is the principle cause of index error?
A. Telescope not being parallel to the frame
B. Index mirror and horizon glass not being parallel
C. Index mirror not being perpendicular to the frame
D. Horizon glass not being perpendicular to the frame

165163 Ref: Celestial, Sextant, Error, Off the Arc
A sextant having an index error that is "off the arc" has a \qquad .
A. positive correction
C. negative correction
B. dip error
D. semidiameter error
$166164 \quad$ Ref: Celestial, Sextant, Error, On the Arc
A sextant having an index error that is "on the arc" has a \qquad .
A. positive correction
C. negative correction
B. dip error
D. semidiameter error

1671074 Ref: Celestial, Sextant, Error, Prismatic
The marine sextant is subject to seven different types of errors, four of which may be corrected by the navigator. An error NOT correctable by the navigator is \qquad -
A. index error
C. perpendicularity of the horizon glass
B. prismatic error
D. perpendicularity of the index mirror

1681402 Ref: Celestial, Sextant, Error, Prismatic
What is a nonadjustable error of the sextant?
A. Prismatic error
C. Side error
B. Index error
D. Error of collimation

169112 Ref: Celestial, Sextant, Error, Side
A marine sextant has the index arm set at zero and the reflected image of the horizon forms a continuous line with the actual image. When the sextant is rotated about the line of sight the images separate. The sextant has \qquad .
A. error of perpendicularity
C. prismatic error
B. side error
D. centering error

170549 Ref: Celestial, Sextant, Error, Side
In order to remove side error from a sextant, you should adjust the \qquad .
A. horizon glass to make it parallel to the horizon mirror with the index set at zero
B. horizon glass to make it perpendicular to the index mirror with the index set at zero
C. horizon glass to make it perpendicular to the sextant frame
D. telescope to make it parallel to the sextant frame

1711735 Ref: Celestial, Sextant, Error, Side
Which of the four adjustable errors in the sextant causes side error?
A. Horizon glass not being perpendicular to the frame
B. Index mirror not being perpendicular to the frame
C. Telescope not being parallel to the frame
D. Elliptical centering error

1721740 Ref: Celestial, Sextant, Error

Which of these sextant errors is nonadjustable?
A. Prismatic error
C. Centering error
B. Graduation error
D. All of the above

173322 Ref: Celestial, Sextant, Ho, Low Moon
At about GMT 1436, on 3 December, the lower limb of the Moon is observed with a sextant having an index error of 2.5^{\prime} on the arc. The height of eye is 32 feet. The sextant altitude (hs) is $3^{\circ} 38.8^{\prime}$. What is the observed altitude?
A. Ho $4^{\circ} 18.6^{\prime}$
C. $\mathrm{Ho} 4^{\circ} 36.3^{\prime}$
B. $\mathrm{Ho} 4^{\circ} 29.1^{\prime}$
D. $\mathrm{Ho} 4^{\circ} 42.2^{\prime}$

174558 Ref: Celestial, Sextant, Ho, Low Planet
In the Bay of Fundy, during twilight, you a take sight of Mars. The sextant altitude (hs) is $03^{\circ} 35.5^{\prime}$. Your height of eye is 32 feet and there is no index error. The air temperature is $-10^{\circ} \mathrm{C}$ and the barometer reads 1010 millibars. What is the observed altitude (Ho)?
A. $03^{\circ} 14.5^{\prime}$
B. $03^{\circ} 15.8^{\prime}$
C. $03^{\circ} 16.2^{\prime}$
D. $03^{\circ} 28.8^{\prime}$

175696 Ref: Celestial, Sextant, Ho, Low Star
On 16 January, you take a sight of a star. The sextant altitude (hs) is $4^{\circ} 33.0^{\prime}$. The temperature is $10^{\circ} \mathrm{C}$, and the barometer reads 992 millibars. The height of eye is 42 feet. The index error is 1.9^{\prime} off the arc. What is the observed altitude (Ho)?
A. $4^{\circ} 10.2^{\prime}$
B. $4^{\circ} 14.3^{\prime}$
C. $4^{\circ} 17.0^{\prime}$
D. $4^{\circ} 24.1^{\prime}$

176699 Ref: Celestial, Sextant, Ho, Low Sun
On 25 December you observe the Sun's lower limb. The sextant altitude (hs) is $4^{\circ} 06.9^{\prime}$. The height of eye is 47 feet and the index error is 1.6^{\prime} on the arc. The temperature is $19^{\circ} \mathrm{F}$ and the barometer reads 1030.8 millibars. What is the observed altitude (Ho)?
A. $3^{\circ} 57.4^{\prime}$
B. $4^{\circ} 01.9^{\prime}$
C. $4^{\circ} 02.5^{\prime}$
D. $4^{\circ} 03.4^{\prime}$

177986 Ref: Celestial, Sextant, Part, Horizon Glass
The horizon glass of a sextant is \qquad .
A. silvered on its half nearer the frame
C. between the horizon and the shade glasses
B. mounted on the index arm
D. All of the above

1781114 Ref: Celestial, Sextant, Part, Index Mirror
The part of a sextant mounted directly over the pivot of the index arm is the \qquad .
A. index mirror
C. micrometer drum
B. horizon glass
D. telescope

179772 Ref: Celestial, Sextant, Reading, Hs D043NG
Sextant A reads \qquad _.
A. $29^{\circ} 42.7^{\prime}$
B. $29^{\circ} 45.7^{\prime}$
C. $29^{\circ} 51.8^{\prime}$
D. $30^{\circ} 47.2^{\prime}$

180773 Ref: Celestial, Sextant, Reading, Hs D043NG
Sextant B in illustration D043NG reads \qquad -.
A. $30^{\circ} 51.0^{\prime}$
B. $30^{\circ} 42.5^{\prime}$
C. $30^{\circ} 47.5^{\prime}$
D. $31^{\circ} 00.0^{\prime}$

181774 Ref: Celestial, Sextant, Reading, Hs D043NG
Sextant C in illustration D043NG reads \qquad _.
A. $30^{\circ} 45.9^{\prime}$
B. $29^{\circ} 56.0^{\prime}$
C. $29^{\circ} 52.0^{\prime}$
D. $29^{\circ} 47.5^{\prime}$

182775 Ref: Celestial, Sextant, Reading, Hs D043NG
Sextant D reads \qquad -.
A. $30^{\circ} 47.5^{\prime}$
B. $29^{\circ} 47.5^{\prime}$
C. $29^{\circ} 42.5^{\prime}$
D. $29^{\circ} 41.6^{\prime}$

1831757 Ref: Celestial, Sextant, Reading, Hs D043NG
Which sextant in illustration D043NG reads $29^{\circ} 42.5^{\prime}$?
A. A
C. C
B. B
D. D

1841758 Ref: Celestial, Sextant, Reading, Hs D043NG
Which sextant in illustration D043NG reads $29^{\circ} 42.7^{\prime}$?
A. A
C. C
B. B
D. D

1851759 Ref: Celestial, Sextant, Reading, Hs D043NG
Which sextant in illustration D043NG reads $29^{\circ} 47.5^{\prime}$?
A. A
C. C
B. B
D. D

1861760 Ref: Celestial, Sextant, Reading, Hs D043NG Which sextant in illustration D043NG reads $30^{\circ} 42.5^{\prime}$?
A. A
C. C
B. B
D. D

1871456
Ref: Celestial, Sextant, Error, Off the Arc D050NG
D
What is the index error of sextant A in illustration D050NG?
A. $0^{\prime} 10$ " off the arc
C. 3' 00 " off the arc
B. $0^{\prime} 10^{\prime \prime}$ on the arc
D. $4^{\prime} 20^{\prime \prime}$ off the arc

1881457 Ref: Celestial, Sextant, Error, Off the Arc D050NG
What is the index error of sextant B in illustration D050NG?
A. 0'30" off the arc
C. 3'30" off the arc
B. 1'00" off the arc
D. 1 ' $30^{\prime \prime}$ on the arc

1891755 Ref: Celestial, Sextant, Error, Off the Arc D050NG
Which sextant has an index error of 4'20" off the arc?
A. A
C. C
B. B
D. D

1901762 Ref: Celestial, Sextant, Error, Off the Arc D050NG
Which sextant shown has an index error of 3 '30" off the arc?
A. A
C. C
B. B
D. D

1911458 Ref: Celestial, Sextant, Error, On The Arc D050NG
What is the index error of sextant C ?
A. $0^{\prime} 20$ " on the arc
C. 2'00" on the arc
B. $1^{\prime} 00$ " on the arc
D. 5'10" on the arc

1921459 Ref: Celestial, Sextant, Error, On The Arc D050NG What is the index error of sextant D ?
A. 7'10" on the arc
C. 3'00" on the arc
B. $6^{\prime} 50$ " on the arc
D. 2'10" on the arc

1931756 Ref: Celestial, Sextant, Error, On The Arc D050NG
Which sextant has an index error of $2 \mathbf{2}^{\prime} 10$ " on the arc?
A. A
C. C
B. B
D. D

1941761 Ref: Celestial, Sextant, Error, On The Arc D050NG
C Which sextant shown has an index error of $0^{\prime} 20^{\prime \prime}$ on the arc?
A. A
C. C
B. B
D. D

195334 Ref: Celestial, System, 90-Ho, Calc
At upper transit, if the zenith distance is 34°, the geographical distance from the observer to a body's GP is \qquad _
C. 2040 miles
B. 1220 miles
D. 2260 miles

196504 Ref: Celestial, System, 90-Ho, Calc
If the Sun's observed altitude is $27^{\circ} 12$ ', the zenith distance is \qquad -
A. $62^{\circ} 48^{\prime}$
B. $27^{\circ} 12^{\prime}$
C. $152^{\circ} 48^{\prime}$
D. $43^{\circ} 12^{\prime}$

197505 Ref: Celestial, System, 90-Ho, Calc
If the Sun's observed altitude is $47^{\circ} 50^{\prime}$, the zenith distance is \qquad .
A. $42^{\circ} 10^{\prime}$
B. $42^{\circ} 50 '$
C. $47^{\circ} 50$
D. $132^{\circ} 10^{\prime}$

198506 Ref: Celestial, System, 90-Ho, Calc
If the Sun's observed altitude is $54^{\circ} 30^{\prime}$, what is the zenith distance?
A. $35^{\circ} 30^{\prime}$
B. $45^{\circ} 30^{\prime}$
C. $12^{\circ} 30^{\prime}$
D. $14^{\circ} 30^{\prime}$

1991596 Ref: Celestial, System, 90-Ho, Calc
When plotting a circle of equal altitude for a high altitude sight, the radius of the circle is determined by the formula \qquad .
A. $90^{\circ}-\mathrm{Ho}$
C. GHA - LHA
B. $180^{\circ}-\mathrm{GHA}$
D. $\mathrm{z}-\mathrm{d}$

2002111 Ref: Celestial, System, 90-Ho, Calc
Zenith distance is equal to \qquad —.
A. $90^{\circ}-\mathrm{Ho}$
B. $90^{\circ}-\mathrm{d}$
C. $\mathrm{Ho}^{\circ}+\mathrm{d}$
D. $90^{\circ}-z$

20110 Ref: Celestial, System, 90-Ho
$90^{\circ}-\mathrm{Ho}=$ \qquad -
A. sextant altitude C. LHA
B. co-latitude
D. zenith distance

202623 Ref: Celestial, System, 90-Ho
In working out a local apparent noon sight for your latitude, you subtract the Ho from 90°. The 90°
represents the angular distance from \qquad _.
A. the equator to the elevated pole
B. your horizon to your zenith
C. your zenith to the elevated pole
D. the geographical position of the Sun to the elevated pole

203904 Ref: Celestial, System, 90-Ho
The difference of latitude (I) between the geographic position (GP) of a celestial body and your position, at the time of upper transit, is represented by \qquad -
A. colatitude
C. zenith distance
B. codistance
D. altitude

2041053 Ref: Celestial, System, 90-Ho
D
The line of position determined from a sight with an observed altitude (Ho) of $88^{\circ} 45.0^{\prime}$ should be
$\overline{\text { A. reduced to the meridian and plotted as a latitude line }}$
B. calculated as a longitude line
C. plotted by using an intercept from an assumed position
D. plotted as an arc around the GP of the body

2051054 Ref: Celestial, System, 90-Ho
The line of position should be plotted as a circle around the GP of the body when the Ho exceeds what minimum value?
A. 80°
B. 83°
C. 85°
D. 87°

2061169 Ref: Celestial, System, 90-Ho
The radius of a circle of equal altitude for a body equals the body's \qquad .
A. declination
B. polar distance
C. altitude
D. zenith distance

2071170 Ref: Celestial, System, 90-Ho
The radius of a circle of equal altitude of a body is equal to the \qquad .
A. coaltitude of the body
C. codeclination of the body
B. altitude of the body
D. polar distance

208559 Ref: Celestial, System, Celestial
In the celestial equator system of coordinates what is equivalent to the colatitude of the Earth system of coordinates?
A. Coaltitude
C. Polar distance
B. Zenith distance
D. Declination

209560 Ref: Celestial, System, Celestial
In the celestial equator system of coordinates what is equivalent to the longitude of the Earth system of coordinates?
A. Zenith distance
C. Declination
B. Azimuth angle
D. Greenwich hour angle

210561 Ref: Celestial, System, Celestial

 In the celestial equator system of coordinates what is NOT equivalent to the longitude of the Earth system of coordinates?A. SHA
C. LHA
B. t
D. Zn

211562 Ref: Celestial, System, Celestial
In the celestial equator system of coordinates what is the equivalent to the meridians of the Earth system of coordinates?
A. Horizon
C. Vertical circles
B. Hour circles
D. Parallel of declination

212848 Ref: Celestial, System, Circle, Diurnal
The change in the length of the day becomes greater as latitude increases because of the \qquad .
A. path of the ecliptic relative to the equator
B. decreasing distance between meridians
C. changing distance between the Earth and the Sun
D. increased obliquity of the Sun's diurnal circle
$213876 \quad$ Ref: Celestial, System, Circle, Diurnal
The daily path of a celestial body that is parallel to the celestial equator is the \qquad .
A. altitude circle
C. diurnal circle
B. vertical circle
D. hour circle

$2141116 \quad$ Ref: Celestial, System, Circle, Diurnal

The path of a celestial body during its daily apparent revolution around the Earth is called its \qquad -.
A. ecliptic
C. altitude circle
B. diurnal circle
D. circle of position

215825 Ref: Celestial, System, Circle, Hour D007NG
The arc of a great circle which passes through the body and celestial poles is part of the \qquad .
A. hour circle
B. diurnal circle
C. observer's meridian
D. altitude circle

21624 Ref: Celestial, System, Circle, Prime Vertical

A celestial body will cross the prime vertical circle when the latitude is numerically \qquad .
A. greater than the declination and both are of the same name
B. less than the declination and both are of the same name
C. greater than the declination and both are of contrary name
D. less than the declination and both are of contrary name
$217971 \quad$ Ref: Celestial, System, Circle, Prime Vertical
The great circle of the celestial sphere that passes through the zenith, nadir, and the eastern point of the horizon is the \qquad _.
A. principal vertical
C. celestial meridian
B. hour circle
D. prime vertical
$2181133 \quad$ Ref: Celestial, System, Circle, Prime Vertical
The point on the celestial sphere that is directly below an observer is the \qquad .
A. pole
C. node
B. nadir
D. zenith

2191155 Ref: Celestial, System, Circle, Prime Vertical
The prime vertical is the great circle on the celestial sphere that passes through the \qquad .
A. celestial poles and the zenith
B. zenith, nadir and the east point of the horizon
C. celestial poles and the celestial body
D. zenith, nadir and celestial body

2201226 Ref: Celestial, System, Circle, Prime Vertical

The Sun's center may be coincident with both the celestial equator and the observer's prime vertical circle when \qquad .
A. it crosses the December solstitial point
C. it is in upper transit
B. it crosses the June solstitial point
D. its declination is zero

221832 Ref: Celestial, System, Circle, Principal Vertical
The azimuth angle of a sun sight is always measured from the \qquad .
A. Greenwich meridian
C. principal vertical circle
B. prime vertical circle
D. first point of Aries
$222972 \quad$ Ref: Celestial, System, Circle, Principal Vertical
The great circle on the celestial sphere that passes through the zenith and the north and south poles is the \qquad -.
A. hour circle
C. principal vertical
B. prime vertical
D. ecliptic
$2231159 \quad$ Ref: Celestial, System, Circle, Principal Vertical
The principal vertical circle is that great circle on the celestial sphere that passes through the
A. zenith and the celestial body
C. poles and Greenwich
B. zenith and the north and south poles
D. zenith and is parallel to the horizon

$2241225 \quad$ Ref: Celestial, System, Circle, Principal Vertical

\qquad .
The Sun's center is coincident with the principal vertical circle when
A. in lower transit
B. the hour circle and prime vertical are coincident
C. the declination is zero degrees and the azimuth is exactly $\mathrm{N} 135^{\circ} \mathrm{E}$
D. the declination is zero degrees and the azimuth is exactly $\mathrm{N} 135^{\circ} \mathrm{W}$

225387 Ref: Celestial, System, Circle, Vertical Concerning a celestial observation, the azimuth angle is measured from the principal vertical circle to the
A. Greenwich celestial meridian
C. local celestial meridian
B. hour circle of the body
D. vertical circle of the body

226422 Ref: Celestial, System, GP, Declination
During the month of October the Sun's declination is \qquad .
A. north and increasing
C. south and increasing
B. north and decreasing
D. south and decreasing

227563 Ref: Celestial, System, GP, Declination
D
In the celestial equator system of coordinates, what is comparable to latitude on the terrestrial sphere?
A. Altitude
C. Celestial meridians
B. Right ascension
D. Declination

228826 Ref: Celestial, System, GP, Declination
The arc of an hour circle between the celestial equator and a point on the celestial sphere, measured northward or southward through 90°, is the \qquad -.
A. altitude
C. latitude
B. declination
D. azimuth angle

229970 Ref: Celestial, System, GP, Declination
The GP of a body for a high altitude sight is determined from the Greenwich hour angle and the
A. circle of equal altitude
C. azimuth angle
B. zenith distance
D. declination

2301202 Ref: Celestial, System, GP, Declination

The small circle of the celestial sphere parallel to the celestial equator, and transcribed by the daily motion of the body, is called the \qquad -
A. hour circle of the body
C. vertical circle of the body
B. parallel of declination
D. parallel of altitude

231140 Ref: Celestial, System, GP, GHA

A position on the Earth has a longitude of $74^{\circ} 10^{\prime} \mathrm{E}$. Its celestial counterpart would have a \qquad .
A. GHA of $285^{\circ} 50^{\prime}$
C. SHA of $285^{\circ} 50^{\prime}$
B. SHA of $74^{\circ} 10^{\prime}$
D. LHA of $74^{\circ} 10^{\prime} E$

232965 Ref: Celestial, System, GP, GHA
The GHA of a star \qquad _.
A. increases at a rate of approximately 15° per hour
B. increases at a rate of approximately 4° per hour
C. decreases at a rate of approximately 15° per hour
D. decreases at a rate of approximately 4° per hour

233968 Ref: Celestial, System, GP, GHA
The GP of a body for a high altitude sight is determined from the declination and the \qquad .
A. Greenwich hour angle
C. zenith distance
B. azimuth
D. right ascension

234969 Ref: Celestial, System, GP, GHA
The GP of a body for a high altitude sight is determined from the declination and the \qquad .
A. right ascension
C. Greenwich hour angle
B. sidereal hour angle
D. observed altitude

2351454 Ref: Celestial, System, GP, GHA

What is the geographic longitude of a body whose GHA is $215^{\circ} 15^{\prime}$?
A. $35^{\circ} 15^{\prime} \mathrm{W}$
B. $35^{\circ} 15^{\prime} \mathrm{E}$
C. $144^{\circ} 45^{\prime} \mathrm{E}$
D. $144^{\circ} 45^{\prime} \mathrm{W}$

2361455 Ref: Celestial, System, GP, GHA
What is the geographic longitude of a body whose GHA is $232^{\circ} 27^{\prime}$?
A. $127^{\circ} 33^{\prime} \mathrm{E}$
B. $52^{\circ} 27^{\prime} \mathrm{E}$
C. $61^{\circ} 52^{\prime} \mathrm{W}$
D. $61^{\circ} 52$ 'E

2371463 Ref: Celestial, System, GP, GHA
What is the longitude of the geographical position of a body whose Greenwich hour angle is $210^{\circ} 30^{\prime} ?$
A. $30^{\circ} 30^{\prime} E$
B. $59^{\circ} 30^{\prime} \mathrm{W}$
C. $120^{\circ} 30^{\prime} \mathrm{W}$
D. $149^{\circ} 30^{\prime} \mathrm{E}$

$238 \quad 846$ Ref: Celestial, System, GP

C
The center of a circle of equal altitude, plotted on the surface of the Earth, is the \qquad .
A. dead reckoning position of the observer
C. geographical position of the body
B. assumed position of the observer
D. assumed position of the body

2391251 Ref: Celestial, System, GP

C
The values of the Greenwich hour angle and declination, tabulated in all almanacs, are for the
$\overline{\text { A. upper limb }}$ of a celestial body
B. lower limb of a celestial body
C. centers of the various celestial bodies
D. lower limb of the Sun and Moon; center of the stars and planets

2401561 Ref: Celestial, System, Horizon, Sensible

When applying a dip correction to the sighted sextant angle (hs), you always subtract the dip because you are correcting \qquad —.
A. hs to the visible horizon
C. hs to the celestial horizon
B. hs to the sensible horizon
D. Ho to the celestial horizon

241566 Ref: Celestial, System, Horizon

In the horizon system of coordinates what is equivalent to latitude on the Earth?
A. Altitude
C. Declination
B. Zenith
D. Zenith distance

242567 Ref: Celestial, System, Horizon
B
In the horizon system of coordinates what is equivalent to longitude on the Earth?
A. Altitude
C. Horizon
B. Azimuth angle
D. Zenith distance
$243568 \quad$ Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the declination of the equator system?
A. Nadir
C. Altitude
B. Azimuth angle
D. Zenith distance
$244569 \quad$ Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the equator on the Earth?
A. Prime vertical circle
C. Parallels of altitude
B. Principal vertical circle
D. Horizon

245570 Ref: Celestial, System, Horizon
D
In the horizon system of coordinates what is equivalent to the Greenwich hour angle of the celestial equator system?
A. Zenith distance
C. Altitude
B. Coaltitude
D. Azimuth

246571 Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the local hour angle of the celestial equator system?
A. Altitude
C. Zenith distance
B. Azimuth
D. Colongitude
$247572 \quad$ Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the meridian angle of the celestial equator system?
A. Azimuth angle
C. Colatitude
B. Zenith distance
D. Altitude

248573 Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the parallels of declination of the celestial equator system?
A. Vertical circles
C. Zenith distance
B. Parallels of altitude
D. Azimuth angle

249574 Ref: Celestial, System, Horizon
In the horizon system of coordinates what is equivalent to the poles on the Earth?
A. Celestial poles
C. Ecliptic poles
B. Zenith, nadir
D. Nodes

250575 Ref: Celestial, System, Horizon

In the horizon system of coordinates what is the equivalent to the celestial equator of the celestial equator system?
A. Horizon
C. Prime meridian
B. Prime vertical circle
D. Principal vertical circle

251576 Ref: Celestial, System, Horizon

In the horizon system of coordinates what is the equivalent to the meridians on the Earth?
A. Horizon
C. Vertical circles
B. Hour circle
D. Celestial meridians
$2521100 \quad$ Ref: Celestial, System, Horizon
The navigational triangle uses parts of two systems of coordinates, one of which is the celestial equator system, the other system is the \qquad —.
A. terrestrial system
C. astronomical system
B. horizon system
D. ecliptic system

253207 Ref: Celestial, System, Nav Triangle

A vertex of the navigational triangle is NOT located at the \qquad .
A. elevated pole
C. zenith
B. celestial body
D. coaltitude
$254270 \quad$ Ref: Celestial, System, Nav Triangle
An azimuth angle for a body is measured from the \qquad -.
A. observer's meridian
C. body's meridian
B. Greenwich meridian
D. zenith distance
$255581 \quad$ Ref: Celestial, System, Nav Triangle
In the navigational triangle, the angle at the elevated pole is the
A. meridian angle
C. right ascension
B. altitude
D. azimuth angle
$2561101 \quad$ Ref: Celestial, System, Nav Triangle
The navigational triangle uses parts of two systems of coordinates, one of which is the horizon system and the other is the \qquad _.
A. terrestrial system
C. celestial equator system
B. astronautical system
D. ecliptic system

2571387 Ref: Celestial, System, Nav Triangle
What great circle is always needed to form the astronomical triangle?
A. Celestial Equator
C. Celestial Meridian
B. Prime Meridian
D. Prime Vertical Circle
$2581410 \quad$ Ref: Celestial, System, Nav Triangle
What is NOT a side of the navigational triangle used in sight reduction?
A. Altitude
C. Colatitude
B. Zenith distance
D. Polar distance

$2591704 \quad$ Ref: Celestial, System, Nav Triangle

Which is NOT a side of the celestial navigational triangle?
A. Co-latitude
C. Altitude
B. Zenith distance
D. Co-declination

260491 Ref: Celestial, System, Zenith, Sight Reduction
If an observer is at $35^{\circ} \mathrm{N}$ latitude, his zenith is \qquad C. $35^{\circ} \mathrm{N}$ of the celestial equator
A. $55^{\circ} \mathrm{S}$ of the celestial equator
C. $35^{\circ} \mathrm{N}$ of the celestial equator
D. $55^{\circ} \mathrm{N}$ of the celestial equator
B. at the north celestial pole
$2611134 \quad$ Ref: Celestial, System, Zenith, Sight Reduction
The point on the celestial sphere that is directly over the observer is the \qquad .
A. node
C. zenith
B. pole
D. nadir
$2621283 \quad$ Ref: Celestial, System, Zenith, Sight Reduction
The zenith is the point on the celestial sphere that is
A. 90° away from the poles C. on the eastern horizon
B. directly over the observer
D. over Greenwich
$2631103 \quad$ Ref: Celestial, System
The navigator is concerned with three systems of coordinates. Which system is not of major concern?
A. Terrestrial
B. Ecliptic
C. Celestial horizon
D. Celestial equator

2641405 Ref: Celestial, Time, Apparent, Sun
What is apparent time is based on?
A. a fictitious sun moving along the celestial equator
B. the visible sun moving along the ecliptic
C. the Moon's motion in relation to the Sun
D. the movement of the first point of Aries
$2651614 \quad$ Ref: Celestial, Time, Apparent, Sun
When the time is based on the movement of the visible Sun along the ecliptic the time is known as
A. real time
C. apparent time
B. visible time
D. mean time

$266369 \quad$ Ref: Celestial, Time, Chronometer, Error
Chronometer error may be found by \qquad .
A. radio time signal
B. comparison with a timepiece of known error
C. applying the prevailing chronometer rate to previous readings
D. All of the above

2671287 Ref: Celestial, Time, Chronometer, Signal
Time signals broadcast by WWV and WWVH are transmitted \qquad .
A. every 15 minutes
C. every hour
B. every 30 minutes
D. continuously throughout day

2681858 Ref: Celestial, Time, Chronometer, Time Tick
Yesterday you took a time tick using the 1200 GMT broadcast, and the chronometer read 11h 59m 59s.
Today at the 1200 GMT time tick the chronometer read 00h 00m 01s. What is the chronometer error?
A. Gaining 2 seconds
C. Fast 2 seconds
B. Losing 2 seconds
D. Fast 1 second

269111 Ref: Celestial, Time, Chronometer A marine chronometer should be rewound once every \qquad -
A. 12 hours
C. 3 days
B. day
D. week
$2701620 \quad$ Ref: Celestial, Time, Chronometer
When using a mechanical (windup type) marine chronometer, how often should it be reset?
A. Only when it is overhauled
B. Whenever the chronometer error exceeds approximately four minutes
C. At the start of each voyage
D. If the chronometer rate changes from gaining to losing or vice versa

2711437 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $0^{\circ} 48^{\prime}$ in time units?
A. 2 min .12 sec .
B. 2 min .42 sec .
C. 3 min. 02 sec .
D. 3 min .12 sec .

2721438 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $1^{\circ} 53$ ' in time units?
A. 3 min .16 sec .
B. 5 min .28 sec .
C. 6 min .43 sec .
D. 7 min .32 sec .

2731440 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $10^{\circ} 48^{\prime}$ in time units?
A. 2 min .39 sec .
B. 20 min .12 sec .
C. 43 min .12 sec .
D. 50 min .12 sec .

2741441 Ref: Celestial, Time, Conversion, Arc To Time What is the equivalent of $2^{\circ} 35^{\prime}$ in time units?
A. 10 min .20 sec .
B. 9 min .10 sec .
C. 7 min .06 sec .
D. 6 min .43 sec .

2751442 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $2^{\circ} 52^{\prime}$ in time units?
A. 9 min .23 sec .
B. 11 min .28 sec .
C. 11 min .56 sec .
D. 12 min .18 sec .

2761446 Ref: Celestial, Time, Conversion, Arc To Time What is the equivalent of $4^{\circ} 36^{\prime}$ in time units?
A. 9 min .12 sec .
B. 14 min .36 sec .
C. 15 min .36 sec .
D. 18 min .24 sec .

2771449 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $5^{\circ} 54^{\prime}$ in time units?
A. 20 min .16 sec .
B. 23 min .36 sec .
C. 25 min .54 sec .
D. 30 min .27 sec .

2781451 Ref: Celestial, Time, Conversion, Arc To Time
What is the equivalent of $83^{\circ} 29.6^{\prime}$ in time units?
A. 5 h 47 m 34.8 s
B. 5 h 18 m 22.7 s
C. 5 h 01 m 42.3 s
D. 5 h 33 m 58.4 s

2791436 Ref: Celestial, Time, Conversion, Time To Arc What is the equivalent of 0 min .16 sec . in arc units?
A. $0^{\circ} 32^{\prime}$
B. $0^{\circ} 16^{\prime}$
C. $0^{\circ} 04^{\prime}$
D. $0^{\circ} 01^{\prime}$

2801439 Ref: Celestial, Time, Conversion, Time To Arc What is the equivalent of 10 min .52 sec . in arc units?
A. $0^{\circ} 47^{\prime}$
B. $1^{\circ} 12^{\prime}$
C. $2^{\circ} 43^{\prime}$
D. $3^{\circ} 52^{\prime}$

2811443 Ref: Celestial, Time, Conversion, Time To Arc What is the equivalent of 23 min .20 sec . in arc units?
A. $16^{\circ} 40^{\prime}$
B. $12^{\circ} 32^{\prime}$
C. $9^{\circ} 28^{\prime}$
D. $5^{\circ} 50^{\prime}$

2821444 Ref: Celestial, Time, Conversion, Time To Arc
What is the equivalent of 37 min .32 sec . in arc units?
A. $4^{\circ} 47{ }^{\prime}$
B. $6^{\circ} 38^{\prime}$
C. $7^{\circ} 41^{\prime}$
D. $9^{\circ} 23^{\prime}$

2831445 Ref: Celestial, Time, Conversion, Time To Arc
A. $60^{\circ} 16^{\prime}$
B. $8^{\circ} 08^{\prime}$
C. $2^{\circ} 08^{\prime}$
D. $1^{\circ} 01^{\prime}$

2841447 Ref: Celestial, Time, Conversion, Time To Arc
D What is the equivalent of 42 min .48 sec . in arc units?
A. $21^{\circ} 24^{\prime}$
B. $18^{\circ} 16^{\prime}$
C. $11^{\circ} 19^{\prime}$
D. $10^{\circ} 42^{\prime}$

2851448 Ref: Celestial, Time, Conversion, Time To Arc What is the equivalent of 47 min .20 sec . in arc units?
A. $8^{\circ} 27{ }^{\prime}$
B. $11^{\circ} 50$
C. $13^{\circ} 42^{\prime}$
D. $13^{\circ} 56^{\prime}$

2861450 Ref: Celestial, Time, Conversion, Time To Arc What is the equivalent of 8 min .56 sec . in arc units?
A. $0^{\circ} 28^{\prime}$
B. $0^{\circ} 46^{\prime}$
C. $1^{\circ} 12^{\prime}$
D. $2^{\circ} 14^{\prime}$

287847 Ref: Celestial, Time, Day, Earth

The change in the length of day becomes greater as latitude increases because of the \qquad .
A. inclination of the diurnal circle to the equator
B. decreasing distance between the terrestrial meridians
C. increased obliquity of the celestial sphere
D. changing distance between the earth and the sun

$$
2881066 \quad \text { Ref: Celestial, Time, Day, Moon }
$$

The lunar day is \qquad .
A. longer than a solar day
C. the same length as the solar day
B. shorter than a solar day
D. longer than a solar day during the summer months and shorter in winter months

2891067 Ref: Celestial, Time, Day, Moon
The lunar day is also known as the \qquad .
A. lunitidal interval
C. nodal day
B. vulgar establishment of the port
D. tidal day

2901461 Ref: Celestial, Time, Day, Moon
What is the length of the lunar day?
A. 24 h 50 m 00 s
B. 24 h 00 m 00 s
C. 23 h 56 m 04 s
D. 23 h 03 m 56 s

291168 Ref: Celestial, Time, Day, Star

A sidereal day is approximately how much shorter than a solar day?
A. 4 minutes
B. 8 minutes
C. 12 minutes
D. 16 minutes

292169 Ref: Celestial, Time, Day, Star

A sidereal day is shorter than a solar day. This difference is due to \qquad .

D
A. irregularities in the daily rotational rate of the Sun
B. the space motion of the solar system
C. the precession of the equinoxes
D. the use of different reference points

2931197 Ref: Celestial, Time, Day, Star

The sidereal day begins \qquad -
A. when the sun is over the first point of Aries
B. when the first point of Aries is over 180° longitude
C. when the first point of Aries is over the upper branch of the reference meridian
D. at 0000 on 1 January (Sidereal Date)

2941198 Ref: Celestial, Time, Day, Star

The sidereal day begins when the \qquad .
A. first point of Aries is over the upper branch of the reference meridian
B. Sun is over the lower branch of the reference meridian
C. Sun is over the upper branch of the reference meridian
D. first point of Aries is over the lower branch of the reference meridian

2951199 Ref: Celestial, Time, Day, Star
The sidereal day begins when the \qquad _.
A. Sun is over the lower branch of the reference meridian
B. Sun is over the upper branch of the reference meridian
C. first point of Aries is over the lower branch of the reference meridian
D. first point of Aries is over the upper branch of the reference meridian

296421 Ref: Celestial, Time, Day, Sun
During one synodic rotation, a body makes one complete turn relative to the \qquad .
A. Earth
C. stars
B. Sun
D. vernal equinox

297895 Ref: Celestial, Time, E of T, Sun
The difference between local apparent time (LAT) and local mean time (LMT) is indicated by the
A. equation of time
B. difference of longitude between the local and central meridian in time units
C. longitude in time units
D. zone description

298941 Ref: Celestial, Time, E of T, Sun
The equation of time is 12 m 00 s and the mean Sun is ahead of the apparent Sun. If you are on the central meridian of your time zone, at what zone time will the apparent Sun cross the meridian?
A. 1148
B. 1200
C. 1212
D. It cannot be determined from the information given.

299942 Ref: Celestial, Time, E of T, Sun
The equation of time is 8 m 00 s . The mean Sun is ahead of the apparent Sun. If you are $2^{\circ} \mathrm{W}$ of the central meridian of your time zone, when will the apparent Sun cross your meridian?
A. 1216
B. 1208
C. 1200
D. 1152

300943 Ref: Celestial, Time, E of T, Sun
The equation of time is 8 m 40 s . The apparent Sun is ahead of the mean Sun. If you are on the central meridian of your time zone, the apparent Sun will cross your meridian at \qquad _.
A. 11-51-20 ZT
B. 12-00-00 ZT
C. $12-04-20 \mathrm{ZT}$
D. $12-08-40 \mathrm{ZT}$

301944 Ref: Celestial, Time, E of T, Sun
The equation of time measures the \qquad .
A. difference between local apparent time and Greenwich apparent time
B. longitude in time units
C. difference between sidereal time and local time at the Greenwich meridian
D. time between the passage of the mean sun and the apparent sun over a meridian

3021076 Ref: Celestial, Time, E of T, Sun

The maximum difference between mean time and apparent time is \qquad -.
A. equal to the longitude expressed in time units
B. about 16 minutes
C. the difference between the GHA of mean sun and the first point of Aries
D. 15° of arc

3031608 Ref: Celestial, Time, E of T, Sun
When the equation of time is taken from the Nautical Almanac for use in celestial navigation, it is used to determine \qquad -.
A. zone time
C. time of local apparent noon
B. sunrise
D. local mean time

304498 Ref: Celestial, Time, GMT, ZT, 1
If the GMT is 1500 , the time at $75^{\circ} \mathrm{E}$ longitude is \qquad
A. 1000
B. 1500
C. 1700
D. 2000

305967 Ref: Celestial, Time, GMT, ZT, 1
The GMT is 0445 and your zone description is +1 . Your zone time is \qquad .
A. 0445
B. 0345
C. 0545
D. 1545

306702 Ref: Celestial, Time, GMT, ZT, 2
On 5 July, at 1200 zone time, you cross the 180th meridian steaming westward. What is your local time?
A. It is 1200, 4 July.
C. It is 1200, 6 July.
B. It is 1200,5 July.
D. It is 2400,6 July.

307706 Ref: Celestial, Time, GMT, ZT, 2
On 6 July, at 1000 zone time, you cross the 180th meridian steaming westward. What is your local time?
A. It is 1000, 5 July.
C. It is 2200, 7 July.
B. It is 1000, 6 July.
D. It is 1000, 7 July.

308726 Ref: Celestial, Time, GMT, ZT, 2
On March 17, at 0500 zone time, you cross the 180th meridian steaming eastward to west longitude.
What is your local time?
A. You are in -12 time zone.
C. It is 0500, March 16.
B. It is 1700 , March 18.
D. It is 0500, March 18.

309729 Ref: Celestial, Time, GMT, ZT, 2
A
On November 1st the zone time is 1700 EST (ZD +5) in LONG $75^{\circ} \mathrm{W}$. What is the corresponding zone time and date in LONG 135° E?
A. 0700, November 2nd
C. 2200, November 1st
B. 0700, November 1st
D. 2200, October 31st

3101102 Ref: Celestial, Time, GMT, ZT, 2
The navigator aboard a ship at approximately $165^{\circ} \mathrm{E}$ longitude observes the Sun at ZT 14-25-04 on 21 September. What is the GMT and Greenwich date of the observation?
A. 03-25-04, 21 September
C. 01-25-04, 21 September
B. 02-25-04, 21 September
D. 01-25-04, 20 September

3112088 Ref: Celestial, Time, GMT, ZT, 2
Your longitude is $179^{\circ} 59^{\prime} \mathrm{W}$. The LMT at this longitude is 23 h 56 m of the 4 th day of the month. Six minutes later your position is $179^{\circ} 59^{\prime} E$ longitude. Your LMT and date is now \qquad _.
A. 00h 02m on the 4th
C. 23 h 50 m on the 5 th
B. 00h 02 m on the 5 th
D. 00 h 02 m on the 6 th
$312882 \quad$ Ref: Celestial, Time, GMT
The date is the same all over the world at \qquad .
A. 0000 GMT
C. 0000 LMT for an observer at $90^{\circ} \mathrm{E}$ longitude
B. 1200 GMT
D. no time
$3131340 \quad$ Ref: Celestial, Time, GMT
Universal time (UTI) is another name for \qquad .
A. sidereal time
C. ephemeris time
B. Greenwich mean time
D. atomic time

3142087 Ref: Celestial, Time, GMT
Your longitude is $124^{\circ} \mathrm{E}$, and your local mean time is 0520 on the 5 th of the month. The mean time and date at Greenwich is \qquad -.
A. 1336 on the 4th
B. 1336 on the 5th
C. 2104 on the 4 th
D. 2104 on the 5 th

315903 Ref: Celestial, Time, Lmt, Sun
The difference in local time between an observer on $114^{\circ} \mathrm{W}$ and one on $119^{\circ} \mathrm{W}$ is \qquad .
A. 1.25 minutes
B. 5 minutes
C. 20 minutes
D. 75 minutes

3161057 Ref: Celestial, Time, Lmt, Sun
The LMT of sunrise on the standard meridian is 0552. Your longitude is $99^{\circ} 15^{\prime} \mathrm{E}$. What is your ZT of sunrise?
A. 0512
B. 0529
C. 0552
D. 0615

3171080 Ref: Celestial, Time, Lmt, Sun
The measurement of local time is based on the passage of the Sun over the \qquad -
A. upper branch of the observer's meridian
C. upper branch of the Greenwich meridian
B. lower branch of the observer's meridian
D. lower branch of the Greenwich meridian

318113 Ref: Celestial, Time, Mean, Sun

A mean sun is used as the reference for solar time for three reasons. Which reason is NOT a cause for use of a mean sun?
A. The motion of the apparent sun is along the ecliptic.
B. Measurement of time is along the celestial equator.
C. The speed of the Earth's revolution is not constant.
D. There are variations in the Earth's rotational speed.

3191078 Ref: Celestial, Time, Mean, Sun
The mean sun used to measure time moves \qquad
C. along the ecliptic at 15° per day
A. along the ecliptic at 15° per hour
D. along the celestial equator at 15° per hour

3201178 Ref: Celestial, Time, Mean, Sun
The reference point for determination of GMT is the passage of the mean sun over what line?
A. First point of Aries
C. 0° longitude
B. Observer's meridian
D. 180° Iongitude

321655 Ref: Celestial, Time, Sidereal, Star
Local sidereal time is equal to the \qquad .
A. GHA of Aries minus 180°
C. LHA of Aries
B. SHA of Aries
D. right ascension of Aries plus 180°

322778 Ref: Celestial, Time, Sidereal, Star
Sidereal time is NOT used \qquad .
A. as the basis for star charts
C. in sight reduction using Pub 249
B. to enter a star finder
D. in sight reductions of planet observations
$323779 \quad$ Ref: Celestial, Time, Sidereal, Star
Sidereal time is used by navigators when \qquad .
A. used with the equation of time
C. calculating the time of moonrise
B. used in the form of LHA Aries
D. determining local apparent time
$324824 \quad$ Ref: Celestial, Time, Sidereal, Star
The approximate positions of the stars are based on sidereal time, which is based upon rotation of the Earth relative to \qquad _.
A. winter solstice
C. summer solstice
B. autumnal equinox
D. vernal equinox

3252102 Ref: Celestial, Time, Sidereal, Star
Your vessel is at the equator at midnight on 1 January, and a star is observed rising. At what time will this same star rise on 1 February, assuming your vessel's location is still at the equator?
A. 2208
B. 2110
C. 2158
D. 2317

326195 Ref: Celestial, Time, Time Diagram, Earth
A time diagram is a diagram of the celestial sphere as observed from above the \qquad .
A. south celestial pole
C. observer's meridian
B. north celestial pole
D. Greenwich meridian

327327 Ref: Celestial, Time, Time Diagram, Earth
At meridian transit, the diagram used by a navigator to illustrate the angles involved is based on the
A. celestial equator as observed from above the south celestial pole
B. celestial equator as observed from above the north celestial pole
C. plane of the observer's meridian
D. plane of the Greenwich meridian

3281124 Ref: Celestial, Time, Year, Earth

The period of the Earth's revolution from perihelion to perihelion is the \qquad .
A. astronomical year
C. solar year
B. anomalistic year
D. sidereal year
$3291014 \quad$ Ref: Celestial, Time, Year, Star
The length of the year with respect to the vernal equinox is the \qquad .
A. tropical year
C. anomalistic year
B. sidereal year
D. All of the above
$3301242 \quad$ Ref: Celestial, Time, Year, Star
The tropical year differs from which year by 20 minutes?
A. Astronomical year
B. Natural year
C. Equinoctial year
D. Sidereal year

331165 Ref: Celestial, Time, ZD
A ship is in longitude $54^{\circ} 00^{\prime} \mathrm{W}$ on a true course of 090°. The ship's clocks are on the proper time zone. At what longitude should the clocks be changed to maintain the proper zone time?
A. $45^{\circ} 00^{\prime} \mathrm{W}$
B. $52^{\circ} 30^{\prime} \mathrm{W}$
C. $60^{\circ} 00^{\prime} \mathrm{W}$
D. $67^{\circ} 30^{\prime} \mathrm{W}$

332166 Ref: Celestial, Time, ZD
A ship is in longitude $54^{\circ} 00^{\prime} \mathrm{W}$ on a true course of 270°. The ship's clocks are on the proper time zone. At what longitude should the clocks be changed to maintain the proper zone time?
A. $45^{\circ} 00^{\prime} \mathrm{W}$
B. $52^{\circ} 30^{\prime} \mathrm{W}$
C. $60^{\circ} 00^{\prime} \mathrm{W}$
D. $67^{\circ} 30^{\prime} \mathrm{W}$

333645 Ref: Celestial, Time, ZD
It is 1200 local time for an observer at $54^{\circ} \mathrm{E}$ longitude. Which statement is TRUE?
A. It is afternoon at Greenwich.
C. The observer is in time zone -4.
B. It is midnight at $126^{\circ} \mathrm{E}$ longitude.
D. All of the above are true.

334925 Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions +4 and +5 is \qquad .
A. $67^{\circ} 30^{\prime} \mathrm{W}$
B. $90^{\circ} 00^{\prime} \mathrm{W}$
C. $67^{\circ} 30^{\prime} \mathrm{E}$
D. $75^{\circ} 00^{\prime} \mathrm{E}$

335926 Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions +7 and +8 is \qquad .
A. $105^{\circ} 00^{\prime} \mathrm{W}$
B. $112^{\circ} 30^{\prime} \mathrm{W}$
C. $117^{\circ} 00^{\prime} \mathrm{W}$
D. $120^{\circ} 30^{\prime} \mathrm{W}$

336927 Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions -10 and -11 is \qquad .
A. $135^{\circ} 30^{\prime} \mathrm{E}$
B. $145^{\circ} 00^{\prime} \mathrm{E}$
C. $150^{\circ} 00^{\prime} \mathrm{E}$
D. $157^{\circ} 30^{\prime} \mathrm{E}$

337928 Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions -2 and -3 is \qquad .
A. $15^{\circ} 30^{\prime} E$
B. $30^{\circ} 00^{\prime} E$
C. $37^{\circ} 30 ' E$
D. $45^{\circ} 00^{\prime} E$

338929 Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions -4 and -5 is \qquad .
A. $60^{\circ} 00^{\prime} E$
B. $67^{\circ} 30^{\prime} E$
C. $75^{\circ} 00^{\prime} \mathrm{E}$
D. $60^{\circ} 00^{\prime} \mathrm{W}$
$339 \quad 930 \quad$ Ref: Celestial, Time, ZD
The dividing meridian between zone descriptions -7 and -8 is \qquad .
A. $112^{\circ} 30^{\prime} \mathrm{E}$
B. $118^{\circ} 30^{\prime} \mathrm{E}$
C. $120^{\circ} 00^{\prime} \mathrm{E}$
D. $116^{\circ} 30^{\prime} \mathrm{W}$
$3401214 \quad$ Ref: Celestial, Time, ZD
C
The standard meridian for the time zone +1 is \qquad .
A. 0°
B. $71 / 2^{\circ} \mathrm{W}$
C. $15^{\circ} \mathrm{W}$
D. $71 / 2^{\circ} \mathrm{E}$

3411215 Ref: Celestial, Time, ZD
B
The standard time meridian for description +12 is \qquad
A. $172.5^{\circ} \mathrm{E}$
B. 180.0°
C. $172.5^{\circ} \mathrm{W}$
D. $165.0^{\circ} \mathrm{W}$

3421216 Ref: Celestial, Time, ZD
The standard time meridian for zone description -1 is \qquad
A. 0°
C. $71 / 2^{\circ} \mathrm{E}$
B. $71 / 2^{\circ} \mathrm{W}$
D. $15^{\circ} \mathrm{E}$

3431217
Ref: Celestial, Time, ZD
The standard time meridian for zone description -12 is \qquad .
A. $165.0^{\circ} \mathrm{E}$
B. $172.5^{\circ} \mathrm{E}$
C. 180.0°
D. $172.5^{\circ} \mathrm{W}$

